of the presence of cis-trans isomers. The substance exhibits a very strong blue fluorescence in ultraviolet light. Anal. Calcd. for C₂₀H₁₆: C, 93.71; H, 6.29. Found: C, 93.62; H, 6.49.

A dipicrate was obtained from alcohol and crystallized as very dark red needles, m. p. 141.5-143°, dec.

Anal. Calcd. for $C_{20}H_{16}\cdot 2C_6H_3O_7N_3$: N, 11.76. Found: N, 11.61.

CONVERSE MEMORIAL LABORATORY
HARVARD UNIVERSITY

CAMBRIDGE, MASSACHUSETTS RECEIVED MARCH 27, 1940

Some New 5,5-Disubstituted Hydantoins

By David Marsh and C. L. Lazzell

It appears desirable to record data obtained on some six new 5,5-disubstituted hydantoins which have been prepared in this Laboratory following Bucherer's¹ method incidental to some other investigations. These substances were all recrystallized from 50% alcohol and were dried for five days at 85° . Except for the di-(p-dimethylaminophenyl) analog, which was yellow and soluble in benzene, they were all white crystalline solids, readily soluble in such organic solvents as acetone and 95% alcohol, but only moderately soluble in water.

isobutyrate exclusively. Only the β -bromo ester was produced even in pentane solution with peroxide catalysis, the conditions most favorable for reversing the mode of addition of hydrogen bromide to a double bond.¹

This is in agreement with similar experiments with acrylic and crotonic acids and ethyl crotonate reported by Walling, Kharasch and Mayo and by Grimshaw, Guy and Smith² since the initiation of this investigation.

Since only the boiling points of the two possible addition products have been recorded, the two isomeric methyl bromoisobutyrates have been carefully characterized.

Methyl β -Bromoisobutyrate.—When redistilled methyl methacrylate⁸ (10 g.) in hexane or carbon tetrachloride solution (50–100 cc.) was treated with hydrogen bromide at 0 or 25° in the presence of 1% of hydroquinone, benzoyl peroxide or "Lucidol"⁴ or while exposed to direct sunlight in a quartz flask, nearly quantitative yields of methyl β -bromoisobutyrate were obtained; b. p. 67° (17 mm.), n^{20} D 1.4551; n^{20} A 1.426; n^{20} D (calcd.) 34.71; n^{20} D (found) 34.47.

Anal. Calcd. for $C_0H_9O_2Br$: Br, 44.15. Found⁶: Br, 44.38.

No other product could be detected; even the first few drops of distillate had properties in agreement with those

> Molecular Calcd.

199.31

216.26

338.50

168.26

205.33

186.27

Found

200

214

344

168

202

188

% Nitrogen Calcd. Found

> 14.1 13.1

> 16.6

16.8

21.0

15.0

14.1

13.07

16.63

16.73

20.57

15.12

—R	—R'
Methyl	Cyclohexyl
Methyl	Styryl
p-Dimethylaminophenyl	p-Dimethylaminophenyl
Methyl	2-Methylpropenyl
Methyl	p-Aminophenyl
Methyl	2-Methyl-2-hydroxypropyl

The yields obtained were rather low, but since it was only desired to obtain a pure sample of each hydantoin, no effort was made to improve them.

(1) Bucherer and Lieb, J. prakt. Chem., [2] 141, 5 (1934). DEPARTMENT OF CHEMISTRY

West Virginia University Morgantown, West Virginia

RECEIVED FEBRUARY 5, 1940

The Addition of Hydrogen Bromide to Methyl Methacrylate

By Charles C. Price and Eugene C. Coyner

It has been found that methyl methacrylate adds hydrogen bromide to form methyl β -bromo-

above. When methanol was used as a solvent no addition occurred at room temperature.

The hydrogen bromide was generated by dropping bromine into tetralin; it was bubbled through tetralin to free it from bromine vapor.

Methyl α -Bromoisobutyrate.—For comparison, the α -bromo ester was prepared by the Hell-Volhard-Zelinsky method. Bromine (102.5 g.) was added to 29.5 g. of

- (1) Walling, Kharasch and Mayo, This Journal, 61, 1711 (1939).
- (2) Walling, Kharasch and Mayo, ibid., 61, 2693 (1939); Grimshaw, Guy and Smith, J. Chem. Soc., 68 (1940).
- (3) E. I. du Pont de Nemours and Company, Wilmington, Delaware,
 - (4) Lucidol Corporation, Buffalo, New York.

Yield, %

48

12

3

18

36

10

204-205

136-137

209-210

100-101

180-181

217 d.

- (5) Vocke (Z. physiol. Chem., 191, 83 (1930)) reported the boiling point as 65-67° (12 mm.).
- (6) Method described by Rauscher, Ind. Eng. Chem., Anal. Ed., 9, 296 (1937).